Synthesis of a base-stabilized alumoxane: preferential hydrolysis of an aluminium–amido over an aluminium–alkyl

C. Niamh McMahon and Andrew R. Barron*

Department of Chemistry, Rice University, Houston, Texas 77005, USA. E-mail: arb@ruf.rice.edu; http://pchem1.rice.edu/~arb/Barron.html

Received 18th August 1998, Accepted 6th October 1998

The preferential hydrolytic cleavage of an Al–N versus an Al–C bond allows for the isolation of the base stabilized alkylalumoxane, $[({}^{t}Bu)_{2}Al{NH(Me)CH_{2}CH_{2}NMe_{2}}]_{2}(\mu-O)$, from the hydrolysis of the intra-molecularly stabilized amino–amide compound, $({}^{t}Bu)_{2}Al[N(Me)CH_{2}CH_{2}NMe_{2}]$, providing a possible general route to alkylalumoxanes.

Conceptually, but not experimentally, the simplest route to alkylalumoxanes (compounds of the general formulae $[(R)Al(O)]_n$ and $[R_2Al-O-AlR_2]_n$ involves the reaction of water with a trialkylaluminium compound.¹ Reacting water (or ice)² with an aromatic or aliphatic hydrocarbon solution of a trialkylaluminium will yield an alkylalumoxane, however, it is important to control the temperature of this highly exothermic reaction both as a safety precaution³ and in order to maximize the yield and ensure the solubility of the products.⁴ In an effort to control the rate at which the water reacts with the trialkylaluminium, several researchers have employed hydrated salts, such as Al₂(SO₄)₃·14H₂O or CuSO₄·5H₂O, as "indirect hydrolysis" sources,⁵ since the water of crystallization in a hydrated salt reacts at a vastly decreased rate as compared to dissolved "free" water. While a number of alternative routes have also been investigated,⁶ none is of generic application and the hydrolysis of trialkylaluminium compounds remains the method of preference. It would be desirable, however, to develop a more general approach to alkylalumoxanes in order to study their structure and reactivity. We have previously observed that in the presence of a heteroatom donor ligand (e.g., alkoxide, aryloxide, amide, etc.) the basicity (reactivity) of an aluminium alkyl group is significantly reduced.⁷ For example, reaction of $[Me_2Al(\mu-NH_2)]_3$ with HOAr (Ar = C_6H_2 -Bu^t₂-2,6-Me-4) results in the formation of Me₂Al(OAr)(NH₃).⁸ Based on these results it is reasonable to propose that alkylalumoxanes may be prepared through the hydrolysis of alkylaluminium amides, alkoxides, etc.

The intra-molecularly stabilized amino–amide compound ('Bu)₂Al[N(Me)CH₂CH₂NMe₂] **I**⁹ is a stable non-pyrophoric solid which undergoes slow hydrolysis resulting in the essentially stoichiometric formation of [('Bu)₂Al{NH(Me)CH₂CH₂-NMe₂}]₂(μ -O).[†] The molecular structure of [('Bu)₂Al{NH-(Me)CH₂CH₂-NMe₂}]₂(μ -O).[†] The molecular structure of [('Bu)₂Al{NH-(Me)CH₂CH₂NMe₂}]₂(μ -O) has been confirmed by X-ray crystallography.[‡] and may be described as a base stabilized tetraalkylalumoxane. Pasynkiewicz and co-workers have reported that the partial hydrolysis of AlMe₃ in the presence of *N*,*N*,*N'*,*N'*-tetramethylethylenediamine (TMEDA) gave a base stabilized tetramethylalumoxane **II** in low yield, however, no structural information was obtained.¹⁰ Subsequently, we have reported a similar synthesis for the first example of a structurally characterized tetraalkylalumoxane, [('Bu)₂Al(py)]₂(μ -O) **III**.¹¹

The molecular structure of $[({}^{t}Bu)_{2}Al{NH(Me)CH_{2}CH_{2}-NMe_{2}}]_{2}(\mu-O)$ is shown in Fig. 1. The molecule exists as a dimer consisting of two $({}^{t}Bu)_{2}Al{NH(Me)CH_{2}CH_{2}NMe_{2}}$ moieties linked by a single oxygen atom bridge, such that the amine ligands are in a staggered *anti* conformation, see Fig. 2. Although not constrained by crystal symmetry, as was observed for $[({}^{t}Bu)_{2}Al(py)]_{2}(\mu-O)$,¹¹ the Al(1)–O(1)–Al(2) angle in $[({}^{t}Bu)_{2}-NH(Pu)]_{2}(\mu-O)$,¹¹ the Al(1)–O(1)–Al(2) angle in $[({}^{t}Bu)_{2}-NH(Pu)]_{2}(\mu-O)$.

Al{NH(Me)CH₂CH₂NMe₂}]₂(μ -O) is close to linear [173.0(4)°], precluding its assignment as a bridging hydroxide or water. The Al–O distances [1.690(7) and 1.714(7) Å] are comparable to those found for [('Bu)₂Al(py)]₂(μ -O) [1.710(1) Å].¹¹ It is worth noting that these Al–O distances are within the range observed for oxo-bridged complexes that contain two five-coordinate aluminium atoms [1.679(2)–1.713(5) Å] in which the Al–O–Al angle varies between 152.0(3)° and 180°.¹² The infrared spectrum of [('Bu)₂Al{NH(Me)CH₂CH₂NMe₂}]₂(μ -O) shows a strong asymmetric Al–O–Al stretch at 1035 cm⁻¹. This is consistent with a linear Al₂O linkage by comparison to the stretches observed for structurally characterized compounds [L₂Al]₂(μ -O), L = 2-methyl-8-quinolinolato (997 cm⁻¹), L₂ = phthalocyanato (1051 cm⁻¹), or *N*,*N'*-ethylenebis(salicylideneiminato) (1067 cm⁻¹).¹²

Ш

The diamine ligands in [(${}^{t}Bu$)₂Al{NH(Me)CH₂CH₂NMe₂}]₂-(µ-O) adopt a configuration that allow hydrogen bonding between the secondary amine's hydrogen atom and the tertiary amine nitrogen. A similar configuration was observed in (${}^{t}Bu$)₃-Al[NH(Me)CH₂CH₂NMe₂] and (${}^{t}Bu$)₃Al[NH(Me)CH₂CH₂-CH₂NMe₂].¹³ The N···N distances [2.87, 2.94 Å] and N– H···N angles [110, 114°] in [(${}^{t}Bu$)₂Al{NH(Me)CH₂CH₂-NMe₂}]₂(µ-O) are similar to those in (${}^{t}Bu$)₃Al[NH(Me)CH₂-CH₂NMe₂] and (${}^{t}Bu$)₃Al[NH(Me)CH₂-CH₂NMe₂].¹³

The hydrolytic protonation of the amide nitrogen, rather than one of the *tert*-butyl groups, follows our previous observ-

Fig. 1 Molecular structure of $[({}^{t}Bu)_{2}Al{NH(Me)CH_{2}CH_{2}NMe_{2}}]_{2}-(\mu-O)$. Thermal ellipsoids shown at the 30% level, and only the amine hydrogens are shown for clarity. Selected bond lengths (Å) and angles (°): Al(1)–O(1) 1.690(7), Al(2)–O(1) 1.714(7), Al(1)–N(11) 2.053(8), Al(2)–N(21) 2.047(9), Al–C 2.00(1)–2.02(1); Al(1)–O(1)–Al(2) 173.0(4), O(1)–Al(1)–N(11) 100.8(3), O(1)–Al(2)–N(21) 101.6(4), O(1)–Al–C 112.6(4)–114.2(4).

Fig. 2 The aluminium coordination sphere in $[({}^{Bu})_2Al{NH(Me)-CH_2CH_2NMe_2}]_2(\mu-O)$ viewed along the Al(1)-Al(2) vector. The N(11)-Al(1)-Al(2)-N(21) torsion angle = 160°. Thermal ellipsoids shown at the 30% level, and hydrogen atoms are omitted for clarity.

ations that the presence of a heteroatom donor ligand (*e.g.*, alkoxide, aryloxide, amide, *etc.*) significantly reduces the basicity of the aluminium alkyl group.¹⁴ Thus, the reaction of a Brönsted acid occurs *via* protonation of the hetero-atom [eqn. (1)] and not the alkyl group [eqn. (2)].¹⁵

$$[\mathbf{R}_{2}\mathrm{Al}(\mathbf{X})]_{n} + \frac{n}{2}\mathrm{H}_{2}\mathrm{O} \longrightarrow \frac{n}{2}[\mathbf{R}_{2}\mathrm{Al} - \mathrm{O} - \mathrm{Al}\mathbf{R}_{2}]_{n} + n \mathrm{H}\mathbf{X} \quad (1)$$

$$[\mathbf{R}_{2}\mathrm{Al}(\mathbf{X})]_{n} + \frac{n}{2}\mathrm{H}_{2}\mathrm{O} \longrightarrow$$
$$\frac{n}{2}[\mathbf{R}(\mathbf{X})\mathrm{Al-O-Al}(\mathbf{X})\mathbf{R}]_{n} + n \mathrm{RH} \quad (2)$$

Although alkylalumoxanes are ordinarily formed *via* the hydrolysis of trialkylaluminium compounds, with the concomitant liberation of the corresponding alkane, hydrolysis of readily prepared dialkylaluminium amides (and alkoxides) offers an alternative and milder synthesis to a variety of alkylalumoxane structures. We are presently using this method to obtain additional information into the structure of alkylalumoxanes.

Acknowledgements

Financial support for this work is provided by the Robert A. Welch Foundation. A. R. B. is indebted to the Alexander Von Humboldt Foundation for a Senior Scientist Award and to Professor H. W. Roesky for his hospitality.

Notes and references

† A solution of ('Bu)₂Al[N(Me)CH₂CH₂NMe₂] was dissolved in hexane and exposed to moist air. Colorless crystals (*ca.* 1.0 g) resulted upon cooling to −23 °C. Yield: ≈90%. IR (Nujol mull, KBr plates, cm⁻¹): 3329w, 2695m, 1613w, 1589w, 1570w, 1359s, 1383s, 1261s, 1188s, 1035s, 931m, 889m, 806m, 759m. ¹H NMR (Bruker AM-250, C₆D₆): δ 3.25 (4 H, m, NCH₂), 2.35 [6 H, d, *J*(H–H) = 6.2 Hz, N(CH₃)], 2.14 (4 H, m, NCH₂), 1.89 [12 H, s, N(CH₃)₂], 1.37 [18 H, s, C(CH₃)₃], 1.33 [18 H, s, C(CH₃)₄].

[‡] Crystal data for [('Bu)₂Al{NH(Me)CH₂CH₂NMe₂]]₂(µ-O): C₂₆H₆₄-Al₂N₄O, M = 502.8, monoclinic, space group $P2_1/n$, a = 15.096(3), b = 14.919(3), c = 15.337(3) Å, $\beta = 91.41(3)^\circ$, U = 3453(1) Å³, Z = 4, $D_e = 0.967$ g cm⁻³, T = 298 K, μ (Mo-K α) = 13.29 cm⁻¹, F(000) = 1128, R = 0.0489, $R_w = 0.0504$ for 1177 independent observed reflections [$|F_o| > 6.0\sigma|F_o|$, $4.0 \le 2\theta \le 40.0^\circ$] and 298 parameters, largest residual = 0.18 e Å⁻³. CCDC reference number 186/1190.

- 1 A. R. Barron, in *Properties & Technology of Metallocene-Based Polyolefins*, ed. W. Kaminsky and J. Scheirs, Wiley, Chichester, 1998.
- 2 H. Winter, W. Schnuchel and H. Sinn, *Macromol. Symp.*, 1995, **97**, 119.
- 3 G. B. Sakharovskaya, N. N. Korneev, A. F. Popov, Yu. V. Kissin, S. M. Mezhkovskii and E. Kristalanyi, *Zh. Obshch. Khim.*, 1969, **39**, 788.
- 4 C. J. Harlan, M. R. Mason and A. R. Barron, *Organometallics*, 1994, **13**, 2957.
- 5 G. A. Razuvaev, Yu. A. Sangalov, Yu. Ya. Nel'kenbaum and K. S. Minsker, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1975, 2547.
- 6 K. Ziegler, Angew. Chem., 1956, 68, 721; M. Bolesławski, S. Pasynkiewicz, K. Jaworski and A. Sadownik, J. Organomet. Chem., 1975, 97, 15; R. J. Wehmschulte and P. P. Power, J. Am. Chem. Soc., 1997, 119, 8387; W. Uhl, M. Koch, W. Hiller and M. Heckel, Angew. Chem., Int. Ed. Engl., 1995, 34, 989; N. Ishihara, D.Phil. Thesis, Oxford University, 1990; J. Storre, C. Schnitter, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, R. Fleischer and D. Stalke, J. Am. Chem. Soc., 1997, 119, 7505.
- 7 M. D. Healy, M. B. Power and A. R. Barron, *Coord. Chem. Rev.*, 1994, **130**, 63.
- 8 M. D. Healy, J. T. Leman and A. R. Barron, J. Am. Chem. Soc., 1991, 113, 2776.
- 9 C. N. McMahon, J. A. Francis, S. G. Bott and A. R. Barron, in the press.
- 10 A. Sadownik, S. Pasynkiewicz, M. Boleslawski and H. Szachnowska, J. Organomet. Chem., 1978, 152, C49.
- 11 M. R. Mason, J. M. Smith, S. G. Bott and A. R. Barron, J. Am. Chem. Soc., 1993, 115, 4971.
- Y. Kushi and Q. Fernando, *Chem. Commun.*, 1969, 555; K. J. Wynne, *Inorg. Chem.*, 1985, 24, 1339; P. L. Gurian, L. K. Cheatham, J. W. Ziller and A. R. Barron, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 1449; D. Rutherford and D. A. Atwood, *Organometallics*, 1996, 15, 4417.
- 13 C. N. McMahon, S. G. Bott and A. R. Barron, J. Chem. Soc., Dalton Trans., 1997, 3129.
- 14 M. D. Healy, M. B. Power and A. R. Barron, *Coord. Chem. Rev.*, 1994, **130**, 63.
- 15 M. D. Healy, J. T. Leman and A. R. Barron, J. Am. Chem. Soc., 1991, 113, 2776.

Communication 8/06502K